
Discussion b

The period found in (b) is the time per cycle, but this value is often quoted as simply the time in convenient units (ms or
milliseconds in this case).

CHECK YOUR UNDERSTANDING
Identify an event in your life (such as receiving a paycheck) that occurs regularly. Identify both the period and frequency of this
event.

Solution
I visit my parents for dinner every other Sunday. The frequency of my visits is 26 per calendar year. The period is two weeks.

16.3 Simple Harmonic Motion: A Special Periodic Motion
The oscillations of a system in which the net force can be described by Hooke’s law are of special importance, because they are
very common. They are also the simplest oscillatory systems. Simple Harmonic Motion (SHM) is the name given to oscillatory
motion for a system where the net force can be described by Hooke’s law, and such a system is called a simple harmonic
oscillator. If the net force can be described by Hooke’s law and there is no damping (by friction or other non-conservative
forces), then a simple harmonic oscillator will oscillate with equal displacement on either side of the equilibrium position, as
shown for an object on a spring in Figure 16.9. The maximum displacement from equilibrium is called the amplitude . The
units for amplitude and displacement are the same, but depend on the type of oscillation. For the object on the spring, the units
of amplitude and displacement are meters; whereas for sound oscillations, they have units of pressure (and other types of
oscillations have yet other units). Because amplitude is the maximum displacement, it is related to the energy in the oscillation.

16.14

Take-Home Experiment: SHM and the Marble
Find a bowl or basin that is shaped like a hemisphere on the inside. Place a marble inside the bowl and tilt the bowl
periodically so the marble rolls from the bottom of the bowl to equally high points on the sides of the bowl. Get a feel for the
force required to maintain this periodic motion. What is the restoring force and what role does the force you apply play in
the simple harmonic motion (SHM) of the marble?
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Figure 16.9 An object attached to a spring sliding on a frictionless surface is an uncomplicated simple harmonic oscillator. When displaced

from equilibrium, the object performs simple harmonic motion that has an amplitude and a period . The object’s maximum speed

occurs as it passes through equilibrium. The stiffer the spring is, the smaller the period . The greater the mass of the object is, the greater

the period .

What is so significant about simple harmonic motion? One special thing is that the period and frequency of a simple
harmonic oscillator are independent of amplitude. The string of a guitar, for example, will oscillate with the same frequency
whether plucked gently or hard. Because the period is constant, a simple harmonic oscillator can be used as a clock.

Two important factors do affect the period of a simple harmonic oscillator. The period is related to how stiff the system is. A very
stiff object has a large force constant , which causes the system to have a smaller period. For example, you can adjust a diving
board’s stiffness—the stiffer it is, the faster it vibrates, and the shorter its period. Period also depends on the mass of the
oscillating system. The more massive the system is, the longer the period. For example, a heavy person on a diving board
bounces up and down more slowly than a light one.

In fact, the mass and the force constant are the only factors that affect the period and frequency of simple harmonic
motion.

Period of Simple Harmonic Oscillator
The period of a simple harmonic oscillator is given by

and, because , the frequency of a simple harmonic oscillator is

Note that neither nor has any dependence on amplitude.
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EXAMPLE 16.4

Calculate the Frequency and Period of Oscillations: Bad Shock Absorbers in a Car
If the shock absorbers in a car go bad, then the car will oscillate at the least provocation, such as when going over bumps in the
road and after stopping (See Figure 16.10). Calculate the frequency and period of these oscillations for such a car if the car’s mass
(including its load) is 900 kg and the force constant ( ) of the suspension system is .

Strategy

The frequency of the car’s oscillations will be that of a simple harmonic oscillator as given in the equation . The

mass and the force constant are both given.

Solution

1. Enter the known values of k and m:

2. Calculate the frequency:

3. You could use to calculate the period, but it is simpler to use the relationship and substitute the

value just found for :

Discussion

The values of and both seem about right for a bouncing car. You can observe these oscillations if you push down hard on the
end of a car and let go.

The Link between Simple Harmonic Motion and Waves
If a time-exposure photograph of the bouncing car were taken as it drove by, the headlight would make a wavelike streak, as
shown in Figure 16.10. Similarly, Figure 16.11 shows an object bouncing on a spring as it leaves a wavelike "trace of its position on
a moving strip of paper. Both waves are sine functions. All simple harmonic motion is intimately related to sine and cosine
waves.

Figure 16.10 The bouncing car makes a wavelike motion. If the restoring force in the suspension system can be described only by Hooke’s

law, then the wave is a sine function. (The wave is the trace produced by the headlight as the car moves to the right.)

Take-Home Experiment: Mass and Ruler Oscillations
Find two identical wooden or plastic rulers. Tape one end of each ruler firmly to the edge of a table so that the length of each
ruler that protrudes from the table is the same. On the free end of one ruler tape a heavy object such as a few large coins.
Pluck the ends of the rulers at the same time and observe which one undergoes more cycles in a time period, and measure
the period of oscillation of each of the rulers.
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Figure 16.11 The vertical position of an object bouncing on a spring is recorded on a strip of moving paper, leaving a sine wave.

The displacement as a function of time t in any simple harmonic motion—that is, one in which the net restoring force can be
described by Hooke’s law, is given by

where is amplitude. At , the initial position is , and the displacement oscillates back and forth with a period .
(When , we get again because .). Furthermore, from this expression for , the velocity as a function
of time is given by:

where . The object has zero velocity at maximum displacement—for example, when ,
and at that time . The minus sign in the first equation for gives the correct direction for the velocity. Just after the
start of the motion, for instance, the velocity is negative because the system is moving back toward the equilibrium point.
Finally, we can get an expression for acceleration using Newton’s second law. [Then we have and , the quantities
needed for kinematics and a description of simple harmonic motion.] According to Newton’s second law, the acceleration is

. So, is also a cosine function:

Hence, is directly proportional to and in the opposite direction to .

Figure 16.12 shows the simple harmonic motion of an object on a spring and presents graphs of and versus time.
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Figure 16.12 Graphs of and versus for the motion of an object on a spring. The net force on the object can be described by

Hooke’s law, and so the object undergoes simple harmonic motion. Note that the initial position has the vertical displacement at its

maximum value ; is initially zero and then negative as the object moves down; and the initial acceleration is negative, back toward the

equilibrium position and becomes zero at that point.

The most important point here is that these equations are mathematically straightforward and are valid for all simple harmonic
motion. They are very useful in visualizing waves associated with simple harmonic motion, including visualizing how waves add
with one another.

CHECK YOUR UNDERSTANDING
Suppose you pluck a banjo string. You hear a single note that starts out loud and slowly quiets over time. Describe what happens
to the sound waves in terms of period, frequency and amplitude as the sound decreases in volume.

Solution
Frequency and period remain essentially unchanged. Only amplitude decreases as volume decreases.
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CHECK YOUR UNDERSTANDING
A babysitter is pushing a child on a swing. At the point where the swing reaches , where would the corresponding point on a
wave of this motion be located?

Solution
is the maximum deformation, which corresponds to the amplitude of the wave. The point on the wave would either be at the

very top or the very bottom of the curve.

PHET EXPLORATIONS

Masses and Springs
A realistic mass and spring laboratory. Hang masses from springs and adjust the spring stiffness and damping. You can even
slow time. Transport the lab to different planets. A chart shows the kinetic, potential, and thermal energy for each spring.

Click to view content (https://phet.colorado.edu/sims/mass-spring-lab/mass-spring-lab_en.html)

Figure 16.13

16.4 The Simple Pendulum

Figure 16.14 A simple pendulum has a small-diameter bob and a string that has a very small mass but is strong enough not to stretch

appreciably. The linear displacement from equilibrium is , the length of the arc. Also shown are the forces on the bob, which result in a net

force of toward the equilibrium position—that is, a restoring force.

Pendulums are in common usage. Some have crucial uses, such as in clocks; some are for fun, such as a child’s swing; and some
are just there, such as the sinker on a fishing line. For small displacements, a pendulum is a simple harmonic oscillator. A simple
pendulum is defined to have an object that has a small mass, also known as the pendulum bob, which is suspended from a light
wire or string, such as shown in Figure 16.14. Exploring the simple pendulum a bit further, we can discover the conditions under
which it performs simple harmonic motion, and we can derive an interesting expression for its period.

We begin by defining the displacement to be the arc length . We see from Figure 16.14 that the net force on the bob is tangent to
the arc and equals . (The weight has components along the string and tangent to the arc.)
Tension in the string exactly cancels the component parallel to the string. This leaves a net restoring force back
toward the equilibrium position at .

Now, if we can show that the restoring force is directly proportional to the displacement, then we have a simple harmonic
oscillator. In trying to determine if we have a simple harmonic oscillator, we should note that for small angles (less than about

), ( and differ by about 1% or less at smaller angles). Thus, for angles less than about , the restoring
force is

The displacement is directly proportional to . When is expressed in radians, the arc length in a circle is related to its radius (
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